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We prove that in the ergodic region I T >  j2(1 + , , /~)] the deviation of the total 
free energy of the Hopfield neural network converges in distribution as N--* oo 
to a (shifted) Gaussian variable. Moreover, the free energy per site converges in 
probability to l i r a ( l / N ) I n ~ N )  ), 
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1. I N T R O D U C T I O N  

The fluctuations of physical observables have been studied in many cases 
in order to have a deeper understanding of the phase diagram of the 
statistical mechanics system under consideration. In the study of disordered 
systems the question about fluctuations arises also because of the random- 
ness of the interaction. The first question to investigate concerns the 
convergence of the free energy to the averaged one w.r.t, the distribution of 
the random variables J,y when the number of spins goes to infinity (only 
results of this kind about systems with a two-body interaction have been 
considered up to now). One of the first answers to this question was given 
in ref. 3 in the case of random independent J,j with a spatial dependence of 
the type l i - j l -~d ,  7 > 1/2; the authors proved the convergence in probabil- 
ity of the free energy to the average value. It is also interesting top study 
the fluctuations of the Edward-Anderson order parameter qu as shown in 
ref. 4. It is proved, in the case of the Sherrington-Kirkpatrick (SK) model 
that if the quantity E(q  N -  E(qN))2--~ 0 for N ~  0% then the mean value of 
the free energy converges to that found by Kirkpatrick and Sherrington. 
Then the breaking of replica symmetry at low temperature which makes 
this free energy wrong is connected with the non-self-averaging property of 
qN and thus with the nontrivial asymptotic probability distribution of the 
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qN. In the case of the Hopfield model the asymptotic form of the free 
energy has been derived in ref. 2 for p finite (p is the number of patterns) 
and p going to infinity with N in such a way that e = piN is constant; in 
that paper, using the saddle point technique and also replica calculations 
in the second case, the phase diagram was derived for both systems and the 
critical e was found as a function of the temperature (ec is defined as the 
maximal value of e after which there is no memorization in the network). 
The convergence for any fi with probability one to the averaged value has 
been shown in the case of finite p in refs 5 and 6 with different techniques. 
In ref. 1 some rigorous results were proved for the SK model, essentially in 
the high-temperature region. They proved, among other, weaker results, 
that in this region the deviation of the total free energy from ln((YYu) ) 
converges in distribution, as N ~ co, to a shifted Gaussian variable. 

We want to extend their results to the Hopfield model (HM) in the 
ergodic region. Namely, we consider the Hamiltonian 

1 P 
H-----N1 Z Z ~a,aj (1.1) <~i<j<~N ,u=l 

where the spins % ..... aN take values ( -  1, + 1) and the patterns ~ are i.i.d. 
random variables. We allow the ~ to run on R with zero mean and all 
finite moments with a symmetric distribution also if the HM is usually 
defined through a symmetric distribution over the values ( - 1 ,  +1). We 
shall remark the difference when necessary. Here p = aN, where p is the 
number of patterns ~ .  It is well known that the ergodic region is defined 
when ~ fe  { - 1 ,  +1} by 

~-> 1 + x / ~  (1.2) 

It is claimed that the model in this region has a trivial behavior (i.e., 
no retrieval states, no spin-glass phase). Nevertheless, no rigorous result 
is known, and in a forthcoming paper we hope to use the technique 
developed here to study in a perturbative way the region arounhd the 
"corner," namely with 1 -  T < 3, ~ < 5, with 5 "small." The difference here 
from ref. 1 is essentially that the variables ~ij=(aN)-l/2~ N ,  1 r  are 
defined as a finite sum of independent variables and they are "weakly" 
dependent. 

2. NOTATIONS AND RESULTS 

The main object we shall consider is the partition function 

7~(~, J~, ~)N = Z e x p [ -  fill(g, _~,a)] (2.1) 
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where O- : =  Fo- 1 ,..., 0"N]. We shall denote by <(. )) the expectation w.r.t, the 
distribution of the ~ variables. Let us write 

(2.2) 

# # where ,n~-is a short-hand notation for {+{/ and 

7/N({'fl'~)=2 N~lT[[IIl+tanh(/3Je) l -  ,</ \N '+Jo-io-/ {2.3) 

with ((~-N(~_, /~, C0)) # 1. Let us write ZN as 

~ N ( ~ ,  J~, 0~) = 2--N ~. I-I ~ W,,(F)O-r (2.4) 
/.z F 

The second summation in (2.4) is over all semisimple graphs with vertices 
(1,..., N), where in a semisimple graph each bond (i, j) can appear only 
once. Let us denote by ]F[ the number of the bonds in the graph F. If 
tel =0,  let us put W . ( F ) =  1; otherwise, 

0 (2.5) 
b: edges of F 

and 

with 

O-r = 1-1 O-e (2.6) 
b: edges o f f  

O-b=O-+O-j if b- {i,j} (2.6') 

Sometimes we shall use the short-hand notation 

W.(J~)  for tanh (2~ ~ )  (2.5') 

Now let us observe that ( ( W u ( F ) ) ) = 0  if the graph F is not a simple 
closed one, that is, if the set O F -  {i~ (1,..., N), i belongs to an odd number 
of edges, of F} is not empty. It follows that 

( (~N(_~ ,  fl, 0~))) = 2 ( ( W I ( F ) ) )  ( 2 . 7 )  
F: c~F = 
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Coming back to (2.4), we can write 
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2N(_r fl, C0 = 2--U Y]''" Y. w l ( r , )  ~ / p ( f ~ p ) E  O'F1' ' ' 0"fp 
F l Fp ff 

(2.8) 

and Z~ at1"'" arp = 0 if the multigraph F1 . . . . .  Fp is not a simple closed 
graph. So the summation over _o- couples the different frequencies #. We 
want to extract from ZN everything that is not a dependent. Then let us 
call a string any open connected graph where each vertex belongs to no 
more than two edges: a product of strings will be any graph not containing 
closed paths. We want to decouple each term in the set {F} of all graphs 
as a product of strings and simple loops. It is clear that in (2.4), 

ar=-aar, VF (2.9) 

Then, if Fc denotes any product of strings, we can perform in (2.4) the 
summation over all graphs with fixed "boundary" OF, OF denoting any sets 
of vertices, 

We would like to write each term in the last summation of the RHS 
of (2.10) as a composition of a product of strings Fc with a simple closed 
graph: F =  FcoF' with OF '=  ~25. To do that, let us give the following rule: 
we start from an endpoint of F, i.e., a vertex of OF belonging to only an 
edge, and run along the graph until we arrive at a branching point. At that 
moment we remove the scanned part of the graph: we repeat the operation 
until 0F no longer contains an endpoint, obtaining in such a way a product 
of strings and a remaining part (only this one if 0F does not contain any 
endpoint at all). If the remaining part is a simple closed graph, then we say 
that F is a "good graph"; otherwise it is a "bad." The remaining part of a 
bad graph contains at least two vertices which are not simple (i.e., they 
belong to an odd number of edges: from now on we shall denote such a 
vertex as n.s.v.). We shall include in the class of bad graph also the graphs 
where the obtained product of strings contains more than one n.s.v, or one 
n.s.v, belong to more than three edges. Let us remark that in the simplest 
closure of a bad graph, i.e., in the closed simple graph obtained from it by 
adding the smallest possible number of extra vertices and edges, we have 

:~(vertices) ~< :~(edges) + 2 (2.10') 
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The same could be true also for some good graph, but we ignore this. Now 
let us consider the difference 

{ " ] 
&C F: a F  fixed F:  c~F = ~ FC: (?Fc = OF 

(2.11) 

The starred sum in (2.11) is over graphs F c with at most one n.s.v.; 
in (2.11) there will appear graphs with a repeated bond [-i.e., with some 
bond (i, j )  appearing at least two times] besides all the bad graphs. We 
shall refer to them globally as to the bad graphs characterized essentially 
by (2.10'). Graphs in (2.11) could appear with a multiplicity v(F)  larger 
than one. The multiplicity of a graph in (2.11) is equal to the number of 
ways to decouple it as F = F c o F '  with 0F '  = ~ ,  minus one. Let us denote 
(2.11) by G~(ff, ~, fl, ~). Then we write 

F F: 0 2J FC: c~Fc = c~F 

with 

#:g 

G.(_~, ~, #, ~)= ~ oorv(r) w u ( r )  (2.13) 
F 

and the last summation in (2.13) is over all the graphs described above. 
Let us now define 

2~)(_~. fl, a) = 2N I~I c o s h ~  r : a r = ~  

2N(_~, fl, ~) = 2-N ~ 1~ ~ aor ~ W,(F)  (2.15) 
o l~ 8F F c : O F c = g F  

We will show that [7/~(_~, fl, C~)-2N(_~, fl, e)]  is the main term of 
77 N(~ _, fi, ~) in the following sense: 

and V6 > 0, f l j2  < 1 

~N(r /~, ~) ) 
P r o b  ( ( ~ _ N - ~ , [ j , O ~ ) )  > N  - 3 / 2 + 6  ~ c ' N  - 2 6 m ,  V m ~ 7 /  + (2.17) 
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where 

((2N(_~, /3, ~))) = ((7/~(_~, /~, :~) 2~x(~ ,/~, C~)) = ((Z~)(_~, /3, ~))) (2.17') 

Equation (2.16) can be also written under the same conditions as 

2~N(~_,~,e)=Z~)(~_,~,C~)[Y-N(~_,fl,~)+~)(~_,~,~)] (2,16') 

where 

Prob([N(~)(~,fl, x)[> N-3/2+6)<c'.N-z6m, Vm67/+ (2.17") 

In (2.17) and (2.17') c and c' are some positive constants depending on/~. 
In the following sections we shall prove otherwise that 

tends in distribution to the exponential of a Gaussian field. We prove 
(2.17) and (2.17") in the Appendix. 

Now we are ready to describe our results. We shall compute the mean 
value of the partition function for large N and prove the sharp definition 
of the free energy per site in the ergodic region. More exactly, we prove 
that 

limoo ( ( l l n  YN(_~,/3, C0)/ = l i r a  lln((Zu(_~,/~, ~))) (2.18) 

and the equivalence of (2.18), in the ergodic region, to the vanishing in the 
limit N ~ oe of the mean value of the order parameter, 

2 
"~N := N(N-- 1) i~<j [ (ai(Tj)N]2 (2.19) 

where ( . ) N  is the mean with respect the Gibbs distribution for finite N. 

Proposition 2.1. Let j2 be the common variance of the vari- 
ables ~'  t '  

(i) For fl, ~: j2fl < 1 

lim 1 c~ N N'ln((Y-N(~-'~'cQ))=ln2--2 [ln(1-~J2)+[tJ2] (2.20) 

From now on let Q(/~) denote such a limit. 
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(ii) For all fl, ~ :  N~fl]2/(1 _flj2)< 1, 

lim((ZN(_~, fl, ~))) = 0  (2.21) 
N 

and (iii) 

lim---1 ((ln Zu(~, B, e) ) ) = l i m l . l n ( ( Z u ( d ,  fl, e) )) (2.22) 
U N - N N  -" 

and (iv) The free energy per site converges to its mean value in probability, 

lims Prob .lnZu(~,_ fl, a ) - - l n 2 + ~ [ l n ( 1 - - f l J a ) +  > 6  = 0  

g6 > 0  and also in L p sense Vp < ~ (2.23) 

Let us remark that the limit (2.20) coincides, for small fl, with that 
found by Amit et al. (2) using the replica symmetry technique. 

Moreover, we shall study the fluctuations of the free energy, namely 

These fluctuations are of order 1 and converge in distribution to a field 
which is the sum of two orthogonal shifted Gaussian variables. 

Proposition 2.2. 

(i) For all ~, fl: x/ -s  2~u(d., fl, ~) tends  in distribu- 
tion to the log-normal variable 

{) = exp(v - �89 (2.24) 

where v is a Gaussian variable with covariance 

(ii) For :~, fl: fig2 < 1, 

( (ZN(_~  , /~, 0{)>) 

822/'67/5-6-10 
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tends in distribution to the variable Q = e x p ( u - � 8 9  where u is a 
Gaussian variable with zero mean and variance 

~f14 j4  
( u2 ) = 8 E  1 __ (/~j2)]2 ((((r >> _ j 4 )  (2.26) 

So the fluctuations due to the field v seem to "diverge" before the ones due 
to the field u. Let us call u and v the "warm" and "cold" fields, respectively. 

3. T H E  M E A N  V A L U E  OF T H E  P A R T I T I O N  F U N C T I O N  A N D  
T H E  L I M I T I N G  C O L D  FIELD 

Let us now consider the variable H~ ~r:~r= ~ ~ / , (F) .  As was pointed 
out in ref. 1, each graph in the sum is a product of simple loops but not 
any product of loops is contained in it. Nevertheless let us consider as in 
ref. 1 the variable 

aN 
Z Z (3.1) 

u = l  7:171 >3 

where the sum runs over all the simple loops. 
Before going on, it is convenient to consider the term inside the 

brackets in (2.2), 

1~ I~ cosh J} =exp  . . 2 - ~  (3~.)2_45N___ ~ (j~)4 + o  
# i< j  t 

(3.2) 

Let us write ~2i<j (J~j)2fl2/2N2 in the form 

(1) 
*<, 2N 2 0, := ~:M ~'=2 W~(7) + o ~-a 

(3.3) 

A lemma similar to Lemma 3.1 in ref. 1 can be now given with respect 
to the variable 

~/N(_~, fl, e ) = ~  ~ EWU(7) - ( (W, (7 ) ) ) ]  : = ~  ~ ~/~,(7) (3.4) 
,u ~,:M~>2 # "e:lYl~>2 

Lemma 3.1. For f l j2 < 1, we have the following results. 

(i) ~/u(_~, fl, ~) converges in distribution to a Gaussian variable u 
with covariance given by (2.26). 
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(ii) ~2~ [ ~ 7 : j 7 1 ~ > 2  ~/u(7)] 2 converges in distribution and in L 2 sense 
to the constant (u2).  

(iii) The following holds: 

lira Prob(max 1~/~(7) I > N - 2 + ~ ) = 0  Ve>0 (3.5) 
N P,  7 

(iv) The following holds: 

N Y 

(v) Then by implication, 

~/AT) k ~ ~ ~ 0  in distribution as N ~ o o  and Vk>2  (3.7) 

Proof. The proof moves along the same lines as in ref. 1, but the 
mechanism of the construction of the Gaussian field is different. Let us 
consider 

~,(7) = X 2 ((~,,(71) ~My~))) (3.8) 
~zt/t2 71~)2 

If/~l :/=#2 and/or 71 (372 = ~ ,  the RHS of (3.8) =0.  If71 072 contains more 
than one point (vertex), it is not hard to see that the contribution will 
be zero as N goes to infinity (the contribution goes like c/N). The only 
surviving contribution comes from terms with /q =#2 and 171 c~721 = 1. 
Moreover, 

~, ( ( ~ / . ( 7 1 ) " ' ~ / . ( 7 . ) ) ) = ~ N  ~ ~t~l(71)'''~/l(Tn)~ (3.9) 
/1 71 " " " 7n 71 " " " 7n 

The number of graphs grows like N ~(vertices), while the contribution of 
each graph goes like N Irl, F =  71 . . . . .  Y,. 

It is easy to see that (3.9) goes to zero if n > 2 [let us remember that 
Z7172 ((~/ ~(71) ~/ ~(72) )) ~ c/N]. So we conclude that 

~/~(7) ~ :~[pairings(1 . . . n ) ]  ~ {{~/~(y) ~ ' w,(7 ))) 
. 7 ~ / /  7 , 7 '  

I~ ~ ' / I  = I 

(3.10) 

The remaining points of the lemma are proved along the same lines as 
in ref. 1, and we omit their proof. We perform direct computations in the 
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next section where we study the warm field coming f r o m  Z N ( ; ,  /~, a ) .  

Observe that 

~ N~-�89 1(~_) k (1) 
~ ((W~,(?))) = aN + o  (3.11) 

# 7:lyl ~> 2 k = 2  2k 

Then, for large N 

aN 
LHS (3.11) = - - T  [ln(1 - flj2) + flj2] 4 (1 - p J 2 )  2 + ~  (3.12) 

and 

= a N  2 [ << ~/1 ('Y 1 ) ~/~/1 ('Y 2) )) 
YlY2:[~21 c~ Y2[ = 1 

a N kl! 
- - ~ N 2  Z kl 2k 1 k I = 2 k 2 = 1 

(N;2kI) k 2 , (s ki+k2* (1 )  
2~2k~k2\N/ \ N / (((r176 

- -  8 (1  - -  f l j 2 ) 2  (<<~4 >> _ j 4 )  _1_ 0 ( 3 . 1 3 )  

In (3.13) the factor kl "k2 in the numerator takes into account the 
number of ways 7, and 72 have to intersect each other, while the factor 1/2 
in front is because each loop has to appear only one time. As we shall see, 

N a f l j2  1 afl4J 4 
- a~- [ln(1 _flj2)+flj2] 4 (1 _ f l j 2 ) 2  F- 2 8 ( f ~ 2 ) 2  ((~14)) _ j 4 )  

is nothing else than ln((Z/N(~, fl, a ) ) ) - - N l n  2 for large N. To see that, let 
us consider 

((Zu(~_,fl, a)>> =2W c~ N ,aj E 
F:OF= 

W l ( / ' ) / / ]  ~N 

= ((7/~)(_~, fl, a)))  (3.14) 
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By (3.3) we can also write 

z~(_~, ~, ~) = [I  Y~ w , ( r )  (3.15) 
,u F : O F =  ~ 

where the summation is over all closed, not necesserily simple graphs: some 
of them could contain edges with a multiplicity larger than one, but less 
than or equal to three (but of course vertices are all simple). It follows that 

71 " " " Ym 

where the summation is over rn simple loops 714  ' #Vm, under the 
condition that not more than three of them can have common edges. By 
removing any constraint in the sum over ~/I "''Vm, it is clear from 
Lemma 3.1 (see also Lemma 3.2 below) that we add contributions which 
are vanishingly small to the mean value of Z~ ) (at least vanishing like 
N-4).  Then, 

((Z~)(_~, fl, ~))) = 2N ~ (~/u(7) + ( (W,(7) ) ) )  

1 

By Lemma 3.1, 

{m ~ [m/2] 1 LHS (3.17)= 2N ul~I 
k~0= ( m -  2k)! k! 

1 7 1 7 2  
]Y l  rm 721 = 1 

So for very large N we can write 

= 2N exp -- [ ln(1- f lJ2)+f lJ2]- -~( l_ f l j2 )  2 

x 2 8 ( i ~ 2 ) 2  (((~4)) _ j 4 ) +  o 

(3.18) 

(3.19) 
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R e m a r k .  It is well known that, for fixed p and large T, 

lim ln[Z-U<<7/u(~, fl, ~ = 0) ) ) ]  = 0 
N 

Let us now observe that 

1--I [1 + W. (? ) ]  - 2-NZ(N1)(_~, /~, ~) 

= ~ w~(r) [I Z WAt(F) 1-I H[I+WAt(~)] 
h = l  F : O F = ~  # = 1  F:~F=Q~5 , u = h + l  7 

(3.20) 

where the second summation on the RHS of (3.20) is over all closed 
graphs, each of them cont~iining at least one edge with a multiplicity larger 
than or equal to four. 

Lemma 3.2. F o r / ? j 2 <  1, 

( ) 

t # Y ) 

in probability when N goes to infinity. 

Proof. The lemma follows easily from 

{'" } Prob ~ W I ( F  ) > N  -s  
F:~ F#  

},o (3.21) 

with some positive constant C, and 

I ' I-L II~ _[I+__ WAt(?)] > N} -< C1 
Prob [2_U<<7/(ul)(~ ' fl, ~)>> "" N 

for some positive constant C1. 

Lemma 3.3. F o r / ~ j 2 <  1, 

(3.21') 

(1  ) 
[2-N((z~)(~ ,  /~, ~)))]  -1 [ I  I ]  [1 + W. (? ) ]  --' exp u --~ <u 2 > 

At y 

in distribution, where u is the Gaussian variable of Proposition 2.2. 
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Proof. From Lemma 3.1 it is easy to prove that 

Vk> 1, ~,~,  IW~(7)lk~o in distribution 
/t 7 

so that 

[2 N<<Z~)(~, fl, ~)>>] - i  ]~ ]-] [1 + W.(7) ]  

,u 7 

-- exp ~ / ~ ( 7 ) -  ~ 2 Z ((~/~/t(~/1) ~/.(72))) (3.22) 
/~ 7172:[Yl c~Y21 = 1 

So we have proved point (i) of Proposition 2.1 and point (ii) of 
Proposition 2.2. 

4. F L U C T U A T I O N  OF T H E  T O T A L  FREE E N E R G Y  IN T H E  
E R G O D I C  REGION 

Let us now consider the variable 

2 N ( _ ~ '  f l '  ~) =2- -N2  H Z  W~(F)arc ( 4 . 1 )  
a # F C 

The second summation in (4.1) is over all products of strings (i.e., graphs 
not including closed paths) containing at most one nonsimple vertex and 
this one with not more than three edges coming out from it. Let us start 
by considering terms containing only one string with (fixed) endpoints i, j. 
The sum over all these strings looks like 

where 

N - - 2  

l , j  

h = 0  i l ~ i 2 ~  - . .  v ~ i h r  

=Z 
h = O  

tanh Yn  'tanh(e 

l~ ~ ~(~)2(l+rl,N) (4.2) 
l =  1,...,h il 

~rob(Irl,N[ > N-2+6) ~<N-k6 V k > 0  

and the double star in (4.2) means il r i2 -~ "'" ~: ih :/: (i, j). 

(4.2') 
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The sum ~2il ~,,_~ ... ~,, can be written as a combination of "free" sums, 
so we get 

E ({~)2 (1 -}- rl,N) = Z ({/p/)2 ( i  + rl,N)(1 + r2,N) 
l = 1 il 1 = 1 il 

(4.3) 

where 

Prob(Ir2,N[ > N  l+al)~<N l+al)~<N kal V k > 0 a n d s o m e 6 1 > 0  

Finally, by the law of large numbers we write 

s u 
2 (~)2 =/~j2 _}_ r 3 , N  

N j=l  

with Prob(]r3,N] > N  -1/2+62)~<N ma= 

V m > 0  and for some 6 2 > 0  w h e n / / j 2 < l  (4 .4)  

So it is not hard to see that for f l j2 < 1 

A ~ - - l _ f l j 2  l + l _ / ~ j 2  

with 

(4.5) 

Prob(lfNl>N-1/z+63)<~N -k63 V k > 0 a n d f o r s o m e 6 3 > 0  (4.5') 

It could seem dangerous to perform the product over # with such a 
bad estimate; nevertheless fiN appears in the "renormalization factor" and 
it will not play any role at all. Of course if ~ take values _ 1, this difficulty 
does not appear. In considering terms which are products of strings, we 
meet three possibilities: (1) There exists (only) one nonsimple common 
vertex, (2) there exist common simple vertices, (3) all the strings are not 
connected. Looking at point 2, each term contains somewhere a factor 

i 

which goes like c , N  -1+a4 with a probability larger than 1 - -c2N -ka4, 
Vk>0,  and some positive constants 64, c~, c2. We shall include terms of 
point 2 in point 3 as a vanishingly small correction. About point 1, we 
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glance, for instance, at terms which are a product of two strings with 
endpoints (i, j, k). Their sum will give the contribution 

N - - 3 N - - 3 k I ( ~ ) 3 / 2  # # ,u i(~N)3/2 1 

hl~0 h2=0 i l = J l ~ i 2 #  ... ~ihi#J25~ ... #Jh2 

By the law of large numbers we can write such a contribution as 

(~N) 3/2 /~ ,u/~ # ~ # 
hi ~j ~k "qN 

where qN is a stochastic variable such that 

ffZrob(tqNl>N l+6s)<~N-kas Vk> 0 and some 3s > O 

These graphs will not give contributions (as N goes to infinity) 
because, as will be clear below, to get a closed graph with simple vertices, 
at least two of them have to appear inside, so that the whole contribution 
will go as  C N  - 2 ( 1 - a )  with some constant C. So we shall consider only the 
terms of possibility 3. Looking at these terms, let us observe that each 
product of strings can be seen as a combination of products of "free" 
strings (i.e., without any constraint among the indices of vertices belonging 
to different strings). It is not hard to realize that, for instance, the sum of 
all products of two strings with endpoints (i, j)-(h, k) can be written as 

# # A/~Ahk(1 -~]~N) where ~rob([fu[ >N-I+~6)~<N m~6 

V m e Z +  and some 66> 0 (4.7) 

Moreover, all graphs constructed by these terms give a contribution 
going like N -1 (see Remark below). Then, let us denote by r a graph 
which is a product of disjoined edges: 

( i , j )~P 

so we can look at 2~v as 

c~ ,u r 

= 2  -N ~ /~I(['I)...AP(PP)~a~I...ar~ (4.8) 
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But 

~r 

if the multigraph F1 . . . . .  Fp is not closed with all simple vertices. So we 
get 

~N(~,/~, ~) = Y~ ~1(p1) . . .  ~p (pp )  (4.8') 
rl-.. Pp:a(~l .... Pp) = 

Let us observe that the multigraph F1 . . . . .  Fp has only simple 
vertices but could contain repeated edges: in such a case the variables 
associated to the same edges have to belong to different values of the index 
#. Let us define a nude graph as any closed graph where each vertex 
belongs to an even number of links. Let us consider the �89  
variables : ~ .  A marked graph is a function 

M: { r } - { M ( r ) }  

which assigns to each edge (i, j )  of a nude graph F a variable / ~  in such 
a way that two edges with a common vertex cannot have variables with the 
same index #. 

Then, 

2u(~_ , ~ , ~ ) = ~  ~ M(F) (4.9) 
M F :  O F  = 

where ~ r  is the summation over all the nude graphs and ZM is the 
summation over all the possible ways to dress a nude graph. 

R e m a r k .  The number of ways to dress a nude graph goes as 
<N~ag~) :  but if two edges have the same frequence #, then this number 
decreases by a factor 1/N. Let y be a simple nude loop. As the function M 
is well defined on such a graph, we can consider the variable (the star is 
to indicate that the summation is over the simple loops) 

VN = Z M(7) (4.10) 
M , ~ '  

Let us remark at once that ( ( ~ / N ) ) - ~ - ~ 0  and VT, 7' such that M ( 7 ) #  M(7'), 
the only case with ( ( M ( 7 ) M ( ? ' ) ) ) #  0 is when ? = 7' and M(?)o M(?')  is a 
closed chain each ring of which contains the same kinds of edges (w.r.t. the 
index p): 

M(7) - /~"~  /~uz /~ ,  . . . .  ~ "  - M(7') = A/if2. ]~/zl " ' "  A/~2. 
- -  i 1 , i 2  i2 , i3  13,t4 i n , i l  ~ t l ' Z 2  i2 ' i3  Z n ' q  

and n has to be larger than or equal to four. 
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But these graphs do not give any contribution as N ~ 0% as we shall 
see. 

So we are in a situation very similar to the one in ref. 1. Here each 
edge contains a factor N-1 instead of i/x/-N, but we have a larger multi- 
plicity of the graphs. 

Lemma4.1 .  For x/~flJ2/(1-flJ2)<l we have the following 
results. 

( i )  ~/U tends in distribution to the gaussian variable v, with 
covariance given by (2.25). 

(ii) * ~]M,v [M(7)]  2 ~ (v2)  as N-*  0% both in distribution and in L 2 
sense. 

(iii) We have 

P r o b [ m a x l M ( 7 ) l > N  2 + ~ ] ~ 0  as N ~ a c ,  Ve>O (4.11) 
M , 7  

Then by implication 

~, IM(7)lk~O in distribution V k > 2  (4.12) 
M,y 

Proof. We have 

N 

<<%>>= Y E 
k = 2 M k , T k  

(([Mk(~k)]2)) 

N 
+ ~, ~, ((Mk(Yk) M;(7k))) (4.13) 

k=4 M k , M ' k , ~ k  

where 7k is a graph with lekl = k, Mk is the restriction of the function M 
on {Tk}, and the second summation in (4.13) is over the marked graphs 
described above. 

Now, 

Z << [Mk(Y,,:)]~ >> - LN(1 5fld2)J 
Yk 

il =~ . . ,  v~ ik 

<< ,-o,~r~*~"'l~o,, ~ [ ~ g ~ , ~ ] 2 . . .  ,-r~"~r ,k .. 

(4.14) 
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where #~.--#k depend on Mk, but # ~ # ~ + ~ ,  Vi= 1,..., k [-~ means we 
consider only the first term in the development of tgh(x)]. Then, 

(( [Mk(Tk)] 2)) --- IN(1 _flj2)j k! (4.15) 
Yk 

Now we have to sum over all the ways to dress a nude loop ~k. It is easy 
to see that the number of these ways is 

(aN)l' ( 1 - 1 )  ~ e (1 - - ~ ) 2  (4.16) 

It is clear otherwise that for the second term in (4.13) the sum over Mk 
goes as (c~N):. Finally we get, for very large N, 

l { l n  [1 _7(flj2,2~ _~(fij2)2 ] 
( ( V ~ v ) ) = -  ~ (l_flj2)2j+(l_fij2)2j+o(1) (4.17) 

> k  > k  Following ref. 1, we put VN=  V~vk+ V N , where V N is constructed 
with loops 7:171 >k .  From (4.15) and (4.16) it is clear that 

LIV~kl l2~k  uniformly in N with ek ~ 0 as k ~ oe 

and lim lim ( ( [ V ~ k ] z ) ) =  (v 2) 
k ---~ oo N ~ o o  

(see criterion C3 in ref. 1). Now we want to show that the quantities 

~k,,(U) = (( [ V ~ k ] ' ) }  -- ~[pairings of {1. . .  n}] (( [V~k]2}} "/2 (4.18) 

vanishes as N ~ Go Vk, n. The proof is essentially the same as in ref. 1. 
We have 

~k,.(N) ~ ((M(7~)-.- M(y.)}} 
(M,71),... (M, Tn): 17il ~< k 

- ~ ~ ((M(Th) M(~jl))) "" �9 ((M(7) M(~))) (4.19) 
pairings (M, TI),...(M, Tn ) 

o f { l - . . n }  [~il<~k 

Let us consider the multigraph II~(F):=M(71) . . . . .  M(?,). Here 
the tilde means that the multigraph F could be not "well dressed" 
[M(7~ ~162  M(7I)o M(72)]. The only possibility for a bond J~ to appear 
an odd number of times is inside a clased "sausage" where the number of 
bonds and the set of indices # are the same in each segment. When the set 
of dressed loops {M(Ti) } in the first term of (4.19) forms n/2 noninter- 
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secting couples of equal loops [here by nonintersecting we mean that if two 
"double loops" have a common vertex, then the four pairs of edges coming 
out from the vertex have different values of #, and two loops could be 
"equal" also if they appear in the last summation in the second term of 
(4.13)], then this term is also contained in the second term of (4.19) up to 
a permutation. The remaining contributions to ~k,~(N) are given by multi- 
graphs with at least a vertex with eight links (with only two different values 
of #) or two vertices with six links. Graphs with an odd number of bonds 
are included in these sets. As in ref. 1, let us write 

I~k,,,(N)l ~< ~ C(_~(F) c.o(~(V)) (4.20) 
/0",F 

where the starred summation is over all multigraphs described above, and 

( >> l,'o  
~o()~(F)) ~< \ 1 - -  flj2 J N Irl (4.21) 

For each n, k there is only a uniformly finite number of equivalence 
classes of graphs 3~r(F) modulo permutations of { 1,..., n }. If n(F) is the 
number of vertices, the weight of each graph of each class decays like 
N Irl, while the number of elements in the class grows like N~(r)(~N)lrl/2. 
But IFI ~> 2n(F)+  2, so the contribution of each class goes like N -1. Then, 

a(n, k) 
IRk, n(N)l ~ < ~  (4.21') 

The other points of Lemma 4.1 are shown in essentially the same way 
as in Lemma 3.1 of ref. 1. 

Now let us remember that 

2N(~_, ~, ~)= Y. M(F) 
M , F  

where M(F) is a "well-dressed" closed graph. Let us consider 

1~ [1 + M ( 7 ) ] =  ~ M(F) (4.22) 
M,7 M,F 

where M(7) is a "well-dressed" loop and liar(F) is a closed graph which 
could also be "poorly dressed" (but always is a product of "well-dressed" 
loops). It is clear that, as in ref. 1, we can state the following result. 
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Lemma 4.2.  We have 

( 1 )  
H [1 + M ( 7 ) ]  --* exp v - ~  (v 2) in distribution as N-+ oo (4.23) 
M, ? 

where v is the same variable as in Lemma 4.1. 

Let us now prove the lemma about the decaying of large graphs. 

kemma 4.3. For  ~ flJ2/(1- f l j2 )<  1, the contribution to 2N of 
large graphs decays exponentially in the following sense: 

(([ ]2)> 4 v 
M(F) ~< const -exp [(2k) 1/2 ] (4.24) 

. , r :  rr, ~ ~ L(1 - / T a ~ )  2] 

Proof. The proof runs along the same lines as in Lemma 3.3 in ref. 1. 
Here we have only to consider that also if M(F)r M'(F), the two marked 
graphs could not be orthogonal. M(F) and M'(F) are products of well- 
dressed loops, so it could happen that same of them are "equal" in the 
sense of Lemma 4.1 [i.e., elements of the second term in (4.13)]. So we can 
write 

LHS (4.24)= ~ ((M(F) M'(r))) 
M , M ' , F : I F I  >~k 

~<exp(-ek)  H 
M 1 , M 2 ; y  

So with 

[1 + ((M,(7) M2(7))5 exp(e 171)3 (4.25) 

e(/TJ2) 2 1 
exp(e) - 1 (1 -/7J2) 2 - (2/~)  ~/2 

and by taking into account of the results of Lemma 4.1, it is easy to get the 
proof along the same lines as in ref. 1. 

As we claimed, our approach reduces the model to a sort of "renor- 
realized" SK model (at least in the region where this renormalization 
works, i.e., in the "ergodic" region), so especially from now on the lines of 
our proofs are very close to those of ref. 1. We report the main results and 
only stress the differences. Then we can prove 

/N 

H [ l + M ( 7 ) ] -  ~. ~ M(yi)...M(y,,)->O 
M , y  n = 0  (m, yi),.. . ,(M, yn ) 

M (7,) ~ M(7/), lY~I < ku  

in distribution as N ~ oo (4.26) 



Free Energy in the Hopfield Model 1001 

provided that kN,  l N diverge when N goes to infinity. Equation (4.24) is 
proved by considering 

r = I~ [1 + zM(7)] 
M,T 

using the remainder formula 

r  ~ o l  (~)(0) R 1 ~ < R ~  R '+1 sup Ir (4.27) 
= �9 z e  C ,  Izl  = R  

for a function which is analytic is a disk of radius R > 1, and the results of 
Lemma 4.1. 

Also by the same arguments used to prove Lemma 4.1 it is possible to 
show 

~~ M(7,) i 2N(;, B, ~)- Z Z M(~I).-- 
n = 0  (M, y l ) - . . (M,  yn) 

m(~i) ~ m(7)), ])~i] ~ kN 
�9 ~ 2 

= ~ M ( r )  - y M ( r )  
M, F:IF] ) kA,IA~ M, F : [ F [  ~< IN kN 2 

~ < ~ + C ' e x p - - l N k N l n L ( l _ f l j 2 ) 2 j  +(lNk~v) v2 (4.28) 

where the first sum in the RHS is the same as in (4.13), while the second 
one is over all poorly dressed graphs and ~; is a finite quantity which is 
independent of N. Choosing lN, k~ in such a way that l u k  u ~ O0 for 
N ~ oo while QlNku/N---, O, it follows that 

2u(~_,fl, cO--~I [1 +m(7) ]  ~ 0  
M ,  7 

So we have proved Proposition 2.2. 

From Proposition 2.2 it follows that 

in distribution N ~  oo (4.29) 

1 o;fl2J 4 
~lnZN(~_,fl,~:)--Q(fl)~O in distribution, V ( l _ f l j 2 )~  < 1 (4.30) 

where Q(fl) is defined in (2.20). 
From (4.28) it is possible to prove point (iii) of Proposition 2.1 by the 

bounds 

1 
-- In ((Zx(~, fl, ~))) ~> In 2 Vfl,~ (4.31) 
N 
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and, with QN := (I/N) In ((ZN(_~, fi, ~))), 

Prob I N  In 77N(~_ , ~, 0~)> ON+g] ~< exp(--eN) Vfl (4.32) 

From (4.20)-(4.32), we are able to deduce points (iii) and (iv) of 
Proposition 2.1. To prove point (ii) is harder. 

5. M E A N  FREE E N E R G Y  A N D  AN O R D E R  P A R A M E T E R  

Let us consider 

d In 7/x(~, fi, e ) = ~  ~ J~(ai~rj)~ (5.1) 
dfi - ~ i<j 

where (-)/~ is the thermal expectation. To decouple the variables J~ and 
(~riaj)a it is not sufficient to cut off the bond J~ from the Hamiltonian. 
Nevertheless, let us define 

g~ 2)= - N  ~,~ h<k h<k 
(h,S,) ~ (~,j) 

H0(i, j, 2) does not contain the bond J~. Let us denote by (.)i , j ,  x the 
thermal expectation w.r.t, the Gibbs distribution given by the Hamiltonian 
(5.2). Then, 

( (~ ia j )  i,j,). + tanh[ (fi/N) ~" ~'1 t ,I J 

(aiaj)a = 1 + tanh[(fl/N) ~ ~" , <] (~,~j), ,j ,~. 

(o.i ,) , , , ,x + tanh (fin {, {)) (1 2 ~o = - < o ~ o j > i , s , ; . ) +  N (5.3) 

with Prob(]~~ >N-2+a)<~c"N -ma for some c " > 0  and Vm~77+. Let us 
stress again that the variables J~ and (cr~as)(0.a) are not independent. We 
are able to control their dependence only at high temperature, namely in 
the ergodic region. To do that, let us write (a~aj)(~).) as 

[ ]_1 1)/ + w. (v )  G.(_~, _~,/~, ~) 
F :  O F  = 

(7/~)(~, fl, e)E22N(~ , fl, e )+  N(N1)]) t (5.4) 
) ( A  j ,  J.) 
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where the subscript (i, j, 2) denotes the absence 
Considering (2.17'), we can write 

~E~ ~,~j H. [Z2F ~o~ E~:~ro = ~- W,(F  c) 
(a,~j) ( i / . )  

_ R ( ~  

with 

of the bond J~. 

+ ~ t  (5.5) 
) ( , , j , 2 )  

Prob([ N(N2I[ >N-3/2+6)~c2N-md Vm e Z'+ 

By (4.8) we put 

where 

A*'(~)= H A*" h , k  
( h , k ) ~ F  

(w,(&~) 

hk - o. ,  W,(J~k) 

if (h,k,#)r 2) 

if (h,k,#)=(i,j,;t) 

(5.6) 

By performing the summation over g in (5.6), we get 

f i E * *  rM*(r) w {i , j}]  + (5.7) 

In (5.7) the star indicates that the bond J~ is absent and the upper summa- 
tion is over all the well-dressed graphs containing one nude link (i, j)  
(nude, i.e., without the coefficient [flj2/(1 - flj2)] tgh [(fl/N)J~]). We can 
also say that M*(F)w {i, j} is a well-dressed graph containing the vertices 
(i,j), while i,j belong to an odd number of edges (only i,j!). Now 
M*(F) w {i, j} can be written as the product of a string with endpoints 
(i, j)  for a simple closed graph, suitably dressed: M*(F~oF'). But as usual 

c M*(r)u  {i,j} CM (C)oM*(r') 

because M*(F~)oM*(F') could be a graph that is not well dressed. We 
write 

M*(F)~ {i,j} = ~ M*(r~) Z M * ( F ' ) +  R ~  (5.8) 
. c M ,Fij ( M * , F ' : ~ F '  = ~ )  

822/67/5-6-11 
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and R(N 3) contains all graphs like M*(F)w {i, j}  under the condition that 
the vertices i and/or j belong to at least two edges with the same index #. 
This means that each graph contains an extra 1/N factor. Moreover, if we 
remain in the ergodic region, we know that for large N, 2N(_~, 13, C~) will 
remain far away from zero, let us say more than N -a, with a probability 
larger than 1 -  N 6/4(v2)1/2, It follows that 

(aiaj)(is~)= ~ M*(F~)+~(4N t 
. c M ,l"ij 

and R(N 4) is essentially 

* M * ( r )  ~M*,F:~F= 

(5.9) 

with 

Prob{ [J~ N(N4)I > N - ( 3 / 2 - a )  } ~< N -1/2 (5.9') 

Then 

132j6 
~" ~ (5.10) ((  JiJ ( aiaJ ) (~ )) ~ N(1 - -  13j2) 

because among the strings M* c (F~) only the one edge string gives a 
contribution. In (5.10), ~ means that we neglect contributions vanishing 
with N at least like 1IN 1 + ~ for some 6 > 0. So we obtain 

d ~'11n - } �9 . / ( ~  ) )  

,u t< 3 

But with the previous estimates it is not hard to see that 

(5.11) 

1 

~13j4  
- 2 ((z(_~, 13, C~)N}) + o(N 1/2) (5.12) 

By direct computations we are able to conclude that 

lim((z(_~, 13, cON)) = 0  (5.13) 
N 

At least in the ergodic region, conditions (ii)-(iv) of Proposition 2.1 
remain equivalent in the Hopfield model. 
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A P P E N D I X  

To prove (2.17), let us introduce the short-hand notations 

where 

2N(/2, _a)= ~ aor ~ Wu( r )  := ~ a~rWu(F ) (A1) 
OF Fc:OFc= OF F 

G(g,#) := (?,(a, _~, fl, ~) (A2) 

Z~)(, u) := 2 W , ( F )  (A3) 
F:OF= 

G,(_a, ~, fl, a ) =  ~ aorv(F) W~(F) (A2') 
F 

In (A1) and (A2') the summations are respectively over all graphs that 
are products of strings with at most one n.s.v., and over all the bad graphs. 
Then, 

Y-N(~_, fl, e) = 2--N ~ l~ [E~)(#) 2N(#, a) + G(g, #)] 
c~ ,u 

= 2 - N ~ ,  ~ 1-I G(a , j )  [ I  E(~)(J)2N(J, a- ) (A4) 
a Z ~ { 1 , . . . , p }  j e z  J ~ z  

where the last sum is over subsets of {1 ..... p}, and p as usual is aN. We 
have 

{.~} 
RHS (A4)= ~ IF] Z~)(J) ~ O(F~) ~/~/1(/'1) 

x= {t,...,p} JCx r~,...,Fp 

. . .O(re) Wp(F, ) .  2 - N ~  ~oF . . . ~ ,  (AS) 
_or 

where z-,r~,...,reX~{z} means that if i~ X, F~ is a "bad graph"; if i~z,  F~ has no 
closed paths and not more than one n.s.v.; O(F~)=v(F~) if i~z,  otherwise 
O(F~) = t. Of course, if Z = ~Z~, we get 

tr ,u 

Let us consider 

{x} 

z= {1,.-.,p}:z~ ~ JCz rb..-, re 

�9 .. o ( r , )  w d r  A �9 2-N y~ ~F ,  �9 ~or~ (as ' )  
ff 
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But Z e  ~ " " GaFf = 0 if ~(F1 . . . . .  Fp) r ~ .  I t  follows that  

{x} 
RN(~, #, ~ ) =  ~ l~  7/~)(j) ~ O(F~) WI(F~)  

)~= {1,...,p} JCZ FI,...,Fp 
Zr 2J 

�9 .. o ( r . )  wp(r~) (A6) 

Let us now prove  (2.17) with m = 1: 

P rob  ((ZU(~, fl, ~)) )  > N - 3 / 2 + a  

N 3 - 25 
~< 

((zN(_r #, ~)))2 
{x} 

• Y, E 
X,Z':Z,Z' ~ ~ FI,...,Fp 

Z,Z'= { I " " P }  0(El . . . . .  Fp)=S2~ 

x o ( C ) . . ,  o ( r p  

{x'} 

E ri,...,rl 
a(rl . . . . .  r;) = 

o ( r l ) . . ,  o ( r p  

x I I ~  X 7/(~)(i) JCz'H 7 / ~ ) ( J ) W I ( F 1 ) ' " ~ / ~ p ( F p ) ~ / I ( F 1 ) ' " ~ / p ( F ; ) I I  

(i7) 

Let us denote  in the following formulas  by F the "bad  graphs"  an by 
F wi thout  the bar  the "good  graphs,"  i.e., the graphs  containing not  more  
than  one n.s.v, and no closed paths.  Then for the mean  ( ( - ) )  appear ing  
after the sums in (A7), 

((-~} = 1-1 {(z(~)(i): w , ( r , )  w , ( r ; ) } }  
ir 
x 1 ]  v(P,) {{ Z(~)(/) �9 W, (F , )  W , ( F / )  }} 

i~ {z m (z'Y} 

x [ [  V(Fi')((Z(~)(i) Wi (F , )  Wi (F , ' ) ) )  
i~ {(z)~ ~ z ' } 

W A r ,  ) ~} x 1-[ ~(r,)- v ( r , - ' ) { {w, ( r , ) -  - '  

where (:g)~ = {1 . - -p} /{ ) /} .  N o w  

~)( i )= y~ w,(r) 
F: OF = ~J 

(AS) 
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From (A8) it is clear that, besides the constraints 0(F1 . . . . .  Fp) = ~ and 
0(F~ . . . . .  Fp) = @, we also have 

8(F, oF/)=QS, ViCzwZ', 8(F, oF')=Q~, Vi~zCrnZ ' 
(A9) 

a(F, o F / ) = ~ ,  V i 6 z n Z  'c, a(F, o F [ ) = ~ ,  Vi6;~rn Z' 

Let us have a look at the most dangerous term: the first expectation ( ( . ) )  
in (A8). The multigraph Fio Fi' has to be a loop or a product of loops, but 
not only! At least two vertices of Fi and of F/ have to belong to some 
other graph Fj or Fj, F], or Fj,  respectively. This fact gives an extra 1IN 
factor in each term appearing in the products of (A8). To better understand 
the situation, let us consider the case when Fi o F / i s  a loop with k vertices. 
Then the contribution of all such loops goes like 

/ f l j 2 \  g(edges) 

But the number of the "free" vertices is not more than k - 1 ,  while the 
number of the edges is k. To get an estimate, let us remove the constraints 
8(F1 . . . . .  Fp) = ~ and 8(F~ . . . . .  F~) = ~ and put instead a factor 1/N 
in front to each term in (A8). Let us remark that 

(( Z(1)(i)2 )) ~ (( 77 (1)(i))) 2 (1 + ~ )  

Then we get 

E 
Fi, F/ 

CZ(N1)(i) 2 ~/ i(Fi) ~/ i(Fi') )) 

~< {{Z~)(i)))2 [ 1+  {{77~1(i)))2-- 1 i N  

~, v(P)((ZII~(i)  W,(F,) W,(F,.'))) ~< NS/2 
r,, r/ 

((Z~)( i )))  2 
v(F,) v(/=/)((W,(F,) W,(/='/))) ~< N4 (A10) 

&,Fi' 

The estimates in (A10) are not the best ones, but they are sufficient for 
our purposes. Then, denoting by 77 the expectation ((Z~)(i))),  we get 

LHS(AV)~<((ZN(_~,fl ,~)))zk=I k,,=o k k" 

[ ( z~-"fl" ~-,,(z3]~+~,-~ ,,{z~ " 

x Z 2 1 + - - - - ~ - ) ]  \NS/2) \~--~) ( A l l )  
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By performing the computations, we arrive at 

LHS (A7) ~< clN 26 exp[~((7l(1)(i)~2 __ 1 ]  (A12) 

Taking into account point (ii) of Proposition 2.1, it is easy to prove in the 
same way (2.17"). 
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